SUPPLEMENTARY MATERIAL

Statistical Properties of RN and SRN measures

The relative nonsynonymous divergence (\(RN = \left| \frac{d_{N12} - d_{N13}}{d_{N23}} \right|\)) is a modification of the Canberra distance: \(d(x, y) = \sum_{i=1}^{p} \frac{|x_i - y_i|}{x_i + y_i}\) where \(x\) and \(y\) are \(p\)-dimensional vector (Johnson and Wichern 2002, p. 671). \(RN\) is one dimension and uses \(x_i + y_i - r\) \((r>0: a\ \text{random variable})\) instead of \(x_i + y_i\) because we can consider \(d_{N23}\) as \(d_{N12} + d_{N13} - r\) \((r>0: a\ \text{random variable})\). The Canberra distance examines the sum of series of a fraction differences between coordinates of a pair of vectors. Each term of fraction difference has value between 0 and 1 \((RN\) can be greater than 1 since \(d_{N23}\) is occasionally less than \(|d_{N12} - d_{N13}|\). Conversely, \(SRN\) be less than -1 or more than 1, see below). Note that if both coordinate are zeros, it needs to be defined as \(\frac{0}{0} = 0\). The Signed \(RN\) \((SRN = \left| \frac{d_{N12} - d_{N13}}{d_{N23}} \right|\) preserves the properties of the Canberra distance since \(RN = |SRN|\) and gives information of asymmetry between a pair. \(SRN\) is approximately normally distributed in our data set (Fig S1.A).

Taylor series provide a natural method to approximate variance through polynomials (Casella and Berger 1990, p.328). To approximate the variance of \(RN\) and \(SRN\), we will use the first-order Taylor series. First, we will approximate the variance of a
differentiable function, \(f(x, y, z) = \frac{x - y}{z} \). Let \(x, y, z \) be random variables with means \(x_0, y_0, z_0 \) where \(x \) and \(y \) are independent, \(z = x + y - r > 0 \) with a random variable \(r (>0) \), which is independent of \(x \) and \(y \), \(E(z) = E(x) + E(y) - E(r) \) and \(\text{var}(z) = \text{var}(x) + \text{var}(y) + \text{var}(r) \). Then the estimate of the variance of \(f(x, y, z) \) is as follows:

\[
\text{var}(f(x, y, z)) = a \text{var}(x) + b \text{var}(y) + c \text{var}(z)
\]

where

\[
a = \frac{(2y_0 - 2x_0 + z_0)(y_0 - x_0 + z_0)}{z_0^4}, \quad b = \frac{(2y_0 - 2x_0 - z_0)(y_0 - x_0 - z_0)}{z_0^4},
\]

\[
c = \left(\frac{y_0 - x_0}{z_0}\right)^2.
\]

Therefore, we can now approximate the variance of \(\text{SRN} = \left(\frac{d_{N12} - d_{N13}}{d_{N23}} \right) \) by

\[
\text{var}(\text{SRN}) = \frac{(2d_{N13} - 2d_{N12} + d_{N23})(d_{N13} - d_{N12} + d_{N23})}{d_{N23}} \text{var}(d_{N12})
\]

\[
- \frac{(2d_{N13} - 2d_{N12} - d_{N23})(d_{N13} - d_{N12} - d_{N23})}{d_{N23}} \text{var}(d_{N13}) + \frac{(d_{N13} - d_{N12})^2}{d_{N23}} \text{var}(d_{N23})
\]

We calculated the standard error of \(\text{SRN} \) by using the expression above (Fig S1.B). Since \(E(RN) \) and \(E(\text{SRN}) \) is approximately \(RN \) and \(\text{SRN} \), the estimated variance of \(RN \) is the same as that of \(\text{SRN} \).

Results when we used \(RN^* = \left| \frac{d_{N12} - d_{N13}}{d_{N12} + d_{N13}} \right|, \text{SRN}^* = \left(\frac{d_{N12} - d_{N13}}{d_{N12} + d_{N13}} \right) \).

We can also investigate asymmetric sequence divergence using \(d_{N12} + d_{N13} \) as the denominator. Similar to above, we can obtain the variance of \(\text{SRN}^* = \left(\frac{d_{N12} - d_{N13}}{d_{N12} + d_{N13}} \right) \) by
\[\text{var}(SRN^*) = \frac{4(d_{N13})^2}{(d_{N12} + d_{N13})^3} \text{var}(d_{N12}) + \frac{4(d_{N12})^2}{(d_{N12} + d_{N13})^3} \text{var}(d_{N13}) \]

The results from correlation analyses are qualitatively the same and significant. \(RN^*\) is significantly correlated with \(d_N\) (Kendall’s correlation coefficient (\(\tau\)) = 0.30, \(P < 0.0001\), Fig S2.A) and -2loglikelihood ratio (\(\tau = 0.65\), \(P < 0.0001\), Fig S2.B). \(SRN^*\) is significantly negatively correlated with \(SRK\) (\(\tau = -0.15\), \(P < 0.001\), Fig S2.C), \(SRA\) (\(\tau = -0.20\), \(P < 0.001\), Fig S2.D), while significantly positively correlated with \(SRF\) (\(\tau = 0.19\), \(P < 0.0001\), Fig S2.E). Also, \(SRN^*\) is significantly negatively correlated with signed measure of closeness (\(SRC\), see below; \(\tau = -0.10\), \(P = 0.0277\), Fig S2.F), and the signed measure of betweenness (\(SRB\), see below; \(\tau = -0.11\), \(P = 0.0078\), Fig S2.G). Again, we performed the Kendall’s correlation test with \(SRF\) and \(SRC\) where -0.1 < \(SRF < 0.1\) (Fig S2.H) and -0.5 < \(SRC < 0.5\) (Fig S2.I) and found significant correlations (\(\tau = 0.14\), -0.09, \(P = 0.0044\), \(P = 0.0329\) respectively).

We examined the covariance of the denominator term \((x_i + x_j)\) and the relative measure \(\frac{x_j - x_i}{x_i + x_j}\) and found that there is no linear relationship between these. In other words, the relationship between relative measures is statistically independent from the relationship between the denominators.

REFERENCES

FIGURE LEGENDS

Figure S1. The distribution of SRN and its standard error (SE, the square root of variance divided by the sample number) among the duplicate pairs. A. The bar chart represents the histogram of SRN and the solid line indicates the density of SRN. The distribution is approximately symmetric. B. The SE of SRN for each duplicate pair is indicated by the bar chart. The dashed line represents the SE is 0.5. Almost all of the SE are less than 0.5.

Figure S2. Scatter plots for RN^* and SRN^* (using $d_{N12} + d_{N13}$ as the denominator). See Supplementary text for description and statistical significance of each plot. The last two scatter plots indicate the relationships between SRN and SRF, SRC when $-0.1 < SRF < 0.1$ and $-0.5 < SRC < 0.5$.

Figure S1.
Figure S2.